### [10:30 – 10:50am] Interpolation & Pulse Shaping (Slides 7-10, 7-14, 7-16)

Review and takeaways from Lecture 7 Interpolation & Pulse Shaping

- Discrete-time to continuous-time conversion requires interpolation
- Interpolation is a filtering operation
- It is convenient to use an FIR filter, but IIR could be used as well
- Interpolation filter has lowpass frequency selectivity
- Common pulse shapes:
  - Infinite two-sided sinc (IIR)
  - Truncated sinc (FIR)
  - Rectangular (FIR)
  - Triangular (FIR)
  - Raised cosine (IIR)
  - Truncated raised cosine (FIR)
- Pulse shape for discrete-time to continuous-time conversion (interpolation):
  - Desired frequency range is  $-\frac{1}{2}f_s < f < \frac{1}{2}f_s$
  - Zero crossings at multiples of  $T_s$  (except origin)
- Pulse shape for discrete-time to discrete-time conversion (interpolation):
  - Desired frequency range is  $-\frac{\pi}{L} < \omega < \frac{\pi}{L}$
  - Zero crossings at multiples of *L* (except origin)

# [10:50am – 11:05am] Announcements: Spectrum Regulation and Auctions

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/13\_Digital\_PAM/announcements.html

# [11:05am - 11:25am] Digital Pulse Amplitude Modulation (Slide 13-3)

Goal: convert bit stream to analog pulses.

- Serial-to-parallel conversion: group stream of bits into symbols
- Constellation maps symbol of bits to amplitude
- A symbol of *J* bits requires 2<sup>*J*</sup> levels in constellation
- The symbol of bits can be thought of as index into lookup table

| 4-PAM   | Symbol of Bits | Symbol Amplitude |
|---------|----------------|------------------|
| Example | 00             | d                |
|         | 01             | 3 <i>d</i>       |
|         | 10             | -d               |
|         | 11             | -3d              |

*M*-level PAM:

- *M* is the number of symbol amplitudes:  $M = 2^J$
- The symbols are separated by a period  $T_{\text{sym}} = 1/f_{\text{sym}}$
- <u>Bit Rate</u> =  $\underbrace{J}_{\text{bits/second}} \times \underbrace{f_{\text{sym}}}_{\text{symbol}}$

Binary phase shift keying (BPSK) is equivalent to 2-PAM

| Q: What is the reasoning behind the ordering in the constellation map?    |                  |                |                  |  |
|---------------------------------------------------------------------------|------------------|----------------|------------------|--|
| A: Different orderings are possible. An alternative example is:           |                  |                |                  |  |
|                                                                           |                  |                |                  |  |
|                                                                           | Two's complement | Symbol of Bits | Symbol Amplitude |  |
|                                                                           | 1                | 01             | 3 <i>d</i>       |  |
|                                                                           | 0                | 00             | d                |  |
|                                                                           | -1               | 11             | -d               |  |
|                                                                           | -2               | 10             | -3d              |  |
| Q: Are the amplitude values in the constellation in analog units?         |                  |                |                  |  |
| A: Yes, they represent amplitudes of the continuous-time analog waveform. |                  |                |                  |  |

### [11:33am - 11:43am] BPSK/2-PAM Example (Slide 13-4)

Symbol amplitudes marked as circles. For 2-PAM, amplitudes are -*d* and +*d*.

- d = 1 Volt
- $T_{\text{sym}} = 4 \text{ ms} = \frac{100 \text{ ms}}{25 \text{ periods}}$

The maximum symbol amplitude is (M - 1)d = d. The maximum amplitude in the baseband PAM signal is less than 2(M - 1)d = 2



#### [11:43am - 11:45am] 4-PAM Example (Slide 13-6)

Symbol amplitudes marked as circles. For 4-PAM, symbol amplitudes are -3*d*, -*d*, +*d*,+3*d*.

- d = 2 Volt
- $T_{\text{sym}} = 3 \text{ ms} = \frac{60 \text{ ms}}{20 \text{ periods}}$

The maximum symbol amplitude is (M - 1)d. The maximum amplitude in the baseband PAM signal is less than 2(M - 1)d = 6



### [11:40am - 11:50am] PAM Transmission (Slide 13-7)



### [11:50am - 11:55am] Digital Interpolation Example (Slide 13-8)

Example: increase sampling rate from 44.1 kHz to 176.4 kHz

- Upsample by 4
- Apply FIR lowpass filter to "fill in" inserted zeros

The input CD audio signal sampled at  $f_{s_1} = 44.1$  kHz. The maximum frequency  $f_{max}$  that could be captured is  $f_{max} = \frac{1}{2}f_{s_1} = 22.05$  kHz.

Upsampling by *L* increases the sampling rate by a factor of *L*, i.e.  $f_s = L f_{s_1}$ . Any frequency content at or above  $f_{max}$  are artifacts introduced by upsampling. The interpolation filter should attenuate frequencies at or above  $f_{max}$  which corresponds to discrete-time freq.

$$\omega_{max} = 2\pi \frac{f_{max}}{f_s} = 2\pi \frac{f_{max}}{L f_{s_1}} = 2\pi \frac{f_{max}}{2 L f_{max}} = \frac{\pi}{L}$$